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Abstract. Blue Midnight Wish hash function is one of 14 candidate functions that are contin-
uing in the Second Round of the SHA-3 competition. In its design it has several S-boxes (bijective
components) that transform 32-bit or 64-bit values. Although they look similar to the S-boxes in
SHA-2, they are also different.
It is well known fact that the design principles of SHA-2 family of hash functions are still kept
as a classified NSA information. However, in the open literature there have been several attempts
to analyze those design principles. In this paper first we give an observation on the properties of
SHA-2 S-boxes and then we investigate the same properties in Blue Midnight Wish.

1 Introduction

Cryptographic hash functions are considered as the fundamental building part of the modern
cryptography and information security. They are present in numerous protocols and schemes
such as digital signatures, commitment schemes, password protection schemes, in algorithms
for checking the data integrity, key derivation functions and cryptographic random number
generators, authentication schemes and many others.

The most well known family of cryptographic hash functions is the so-called MD4 family to
which belong the hash functions: MD4, MD5, SHA-0, SHA-1 and SHA-2.

MD4 and MD5 were designed by Ronald Rivest [1, 2] and SHA family was designed by NSA
and adopted by National Institut of Standards and Technology (NIST) as a US federal standard
[3, 4]. According to the time plan of the approved use of cryptographic hash functions, the SHA-2
functions are intended to replace SHA-1 in 2010 [4].

Being the most important part of the design of numerous cryptographic algorithms and
schemes, cryptographic hash functions of the MD4 family in the last 15–20 years have been
scrutinized by numerous cryptographers and we have witnessed several successful attacks and
breakthroughs in their cryptanalysis. We can mention the cryptanalysis of den Boer and Bosse-
laers [5, 6] in 1991 and 1993, Vaudenay [7] in 1995, Dobbertin [8] in 1996 and 1998, Chabaud
and Joux [9] in 1998, Biham and Chen [10] in 2004, and Wang et al. [11–14] in 2005. Note that
the fastest method for finding MD5 collisions (so called “Tunneling method”) was discovered
by Klima in 2006 [29] and it is able to generate collisions in several seconds on a standard PC.
In short, the most well known cryptographic hash functions such as: MD4, MD5, SHA-0 and
SHA-1, have succumbed to those attacks, but so far SHA-2 family remains unbroken.

Since SHA-2 was designed by NSA, the design principles behind its construction are not
publicly available. However, several public papers produced by the academic cryptographic com-
munity have been devoted to the cryptanalysis of SHA-2 hash functions. Gilbert and Handschuh
in 2003 have made an analysis of the SHA-2 family [15]. They proved that there exist XOR-
differentials that give a 9-round local collision with probability 2−66. In 2004, Hawkes, Paddon
and Rose [16] improved the result and showed existence of addition-differentials of 9-round local
collisions with probability of 2−39. Different variants of SHA-256 have been analyzed in 2005 by



Yoshida and Biryukov [17] and by Matusiewicz et al., [18]. In 2006, Mendel et al. [19], found
XOR-differentials for 9-round local collisions, also with probability 2−39 (recently improved to
the value 2−38 [20] ). In 2008, Nikolic̀ and Biryukov have found collisions in 21 step reduced
SHA-256, and their attack was afterwards improved by Indesteege et al., up to 24 steps [22].

Following the developments in the field of cryptographic hash functions, NIST organized
two cryptographic hash workshops [23] in 2005 and 2006 respectively. As a result of those
workshops, NIST decided to run a 4 year world-wide open hash competition for selection of the
new cryptographic hash standard SHA-3 [24]. The requirements for the hash digest size for the
new cryptographic hash functions are: 224, 256, 384 and 512 bits - the same as for the current
SHA-2 standard. Out of 64 initial submissions, 51 entered the First Round [25], and 14 have
been selected for the Second Round of the SHA-3 competition [26].

Blue Midnight Wish hash function is the fastest hash function among 14 candidates
in the Second Round of the SHA-3 competition [27]. It has several bijective components (S-
boxes) that look like the bijective components in SHA-2. In this paper we will describe some of
the principles how these components were chosen showing also comparison between the similar
bijective components that are present in SHA-2 functions.

The paper is organized as follows: In Section 2 we give some basic observations on the
properties of the four S-boxes present in SHA-2 design, in Section 3 we analyze the S-boxes of
Blue Midnight Wish according to the observed properties of SHA-2 S-boxes, and we end the
paper with Conclusions and future work.

2 Observations on some properties of the SHA-2 S-boxes

SHA-2 is actually a family of four hash functions with outputs of 224, 256, 384 and 512 bits,
and accordingly, sometimes SHA-2 functions are denoted as SHA-224, SHA-256, SHA-384 and
SHA-512. The full description of SHA-2 family can be found in [4].

The main difference between those four functions is that SHA-224 and SHA-256 are de-
fined by operations performed on 32-bit variables, while SHA-384 and SHA-512 are defined by
operations performed on 64-bit variables.

We give here the definitions of four S-boxes (or bijective transformations) present in the
design of SHA-2 that acts either on 32 or 64 bits, while the rest of the design specifics are not
important for this paper.

For SHA-224/256 those four bijective transformations are defined as:

Σ256
0 (x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)

Σ256
1 (x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)

σ256
0 (x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)

σ256
1 (x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)

(1)

where ROTRn(x) means rotation of the 32-bit variable x to the right for n positions and
SHRn(x) means shifting of the 32-bit variable x to the right for n positions.

For SHA-384/512 the four bijective transformations are defined as:

Σ512
0 (x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)

Σ512
1 (x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)

σ512
0 (x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)

σ512
1 (x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

(2)

where ROTRn(x) means rotation of the 64-bit variable x to the right for n positions and
SHRn(x) means shifting of the 64-bit variable x to the right for n positions.

Previously, an interest to analyze the S-boxes in SHA-2 was described in the work of Ma-
tusiewicz et al., [18] where they noted:
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– “The substitution boxes Σ0 and Σ1 constitute the essential part of the hash function and fulfil
two tasks: they add bit diffusion and destroy the ADD-linearity of the function.”

– “σ0 and σ1 have both the property to increase the Hamming weight of low-weight inputs.
This increase is upper bounded by a factor of 3. The average increase of Hamming weight
for low-weight inputs is even higher if three rotations are used instead of two rotations and
one bit-shift. However, a reason for this bit-shift is given by the next observation.”

– “In contrast to all other members of the MD4-family including SHA-1, rotating expanded
message words to get new expanded message words is not possible anymore (even in the
XOR-linearised case). This is due to the bit-shift being used in σ0 and σ1.”

In what follows we will give another observation for the used S-boxes in SHA-2. For that
purpose let us recall the following simple fact:

Corollary 1. The relations expressed in equations (1) and (2) can be expressed in a matrix-
vector form:

Σ256
0 (x) = Σ256

0 · x
Σ256

1 (x) = Σ256
1 · x

σ256
0 (x) = s256

0 · x
σ256

1 (x) = s256
1 · x

(3)

Σ512
0 (x) = Σ512

0 · x
Σ512

1 (x) = Σ512
1 · x

σ512
0 (x) = s512

0 · x
σ512

1 (x) = s512
1 · x

(4)

where Σ256
0 , Σ256

1 , s256
0 and s256

1 are 32 × 32 nonsingular matrices in GF (2), and where Σ512
0 ,

Σ512
1 , s512

0 and s512
1 are 64×64 nonsingular matrices in GF (2) and the vector x is 32 dimensional

in equation (3) or is 64 dimensional in equation (4). ut
For the properties that we have observed on SHA-2 S-boxes we need the following Lemma:

Lemma 1. Every nonsingular matrix S of order n×n in GF (2), is also nonsingular in the ring
Z2n(+, ∗) where the operation “+” is addition modulo 2n and the operation “∗” is multiplication
modulo 2n. ut

We have used Lemma 1 and interpreted the matrices Σ256
0 , Σ256

1 , s256
0 and s256

1 in the
ring Z232(+, ∗), counting the number of different elements present in their inverses:

(
Σ256

0

)−1,(
Σ256

1

)−1,
(
s256
0

)−1 and
(
s256
1

)−1.
We did that too for

(
Σ512

0

)−1,
(
Σ512

1

)−1,
(
s512
0

)−1 and
(
s512
1

)−1.
Before presenting the results of our analysis of S-boxes used in SHA-2, let us formalize our

observations by the following Definition:

Definition 1. For every nonsingular matrix S of order n×n in GF (2), let us denote by C(S−1)
the number of different elements present in the inverse matrix S−1 when the inverse is taken in
the ring Z2n(+, ∗).

For example let us take n = 16 and let S be the following matrix:

S =




0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1
1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1
1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0
0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0
0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1
1 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0




.
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The inverse matrix S−1 in Z216(+, ∗) is the following matrix:

S−1 =




16191 60910 46261 48574 12336 7710 53971 50116 62452 57055 19275 56284 771 57826 11565 15420
15420 16191 60910 46261 48574 12336 7710 53971 50116 62452 57055 19275 56284 771 57826 11565
11565 15420 16191 60910 46261 48574 12336 7710 53971 50116 62452 57055 19275 56284 771 57826
57826 11565 15420 16191 60910 46261 48574 12336 7710 53971 50116 62452 57055 19275 56284 771

771 57826 11565 15420 16191 60910 46261 48574 12336 7710 53971 50116 62452 57055 19275 56284
56284 771 57826 11565 15420 16191 60910 46261 48574 12336 7710 53971 50116 62452 57055 19275
19275 56284 771 57826 11565 15420 16191 60910 46261 48574 12336 7710 53971 50116 62452 57055
57055 19275 56284 771 57826 11565 15420 16191 60910 46261 48574 12336 7710 53971 50116 62452
62452 57055 19275 56284 771 57826 11565 15420 16191 60910 46261 48574 12336 7710 53971 50116
50116 62452 57055 19275 56284 771 57826 11565 15420 16191 60910 46261 48574 12336 7710 53971
53971 50116 62452 57055 19275 56284 771 57826 11565 15420 16191 60910 46261 48574 12336 7710
7710 53971 50116 62452 57055 19275 56284 771 57826 11565 15420 16191 60910 46261 48574 12336

12336 7710 53971 50116 62452 57055 19275 56284 771 57826 11565 15420 16191 60910 46261 48574
48574 12336 7710 53971 50116 62452 57055 19275 56284 771 57826 11565 15420 16191 60910 46261
46261 48574 12336 7710 53971 50116 62452 57055 19275 56284 771 57826 11565 15420 16191 60910
60910 46261 48574 12336 7710 53971 50116 62452 57055 19275 56284 771 57826 11565 15420 16191




,

so C(S−1) = 16 because the matrix S−1 has these 16 different elements: {771, 7710, 11565,
12336, 15420, 16191, 19275, 46261, 48574, 50116, 53971, 56284, 57055, 57826, 60910, 62452}.

The measure C(S−1) can be seen as a concept close to the concept of one-wayness of the
bijective transformations i.e. close to the concept of the computational asymmetry as defined in
[28] and the references there. However, in this moment we do not have a defined strong and precise
mathematical connection between our measure C(S−1) and the concept of the computational
asymmetry.

By simple application of the Definition 1 we have obtained the following result:

Corollary 2.
C

(
Σ256

0
−1) = 32, C

(
Σ256

1
−1) = 32, C

(
s256
0

−1) = 504 and C
(
s256
1

−1) = 121.
C

(
Σ512

0
−1) = 64, C

(
Σ512

1
−1) = 64, C

(
s512
0

−1) = 116 and C
(
s512
1

−1) = 2044. ut
Since S-boxes in SHA-2 are obtained either by only three rotations or by two rotations and

one shift to the right, we were interested to see what are the other statistical properties of
the whole set of all possible S-boxes that can be obtained either by three rotations or by two
rotations and one shift to the right, operating on 32 or 64 bits.

Our findings are presented in the next three Corollaries (the proofs of all of them can be
done by simple exhaustive search).

Corollary 3. If the function Σ : {0, 1}n → {0, 1}n is defined as

Σ(x) = ROTRr1(x) ⊕ ROTRr2(x) ⊕ ROTRr3(x) ≡ (Σ) · x (5)

where n = 32 or n = 64 and 0 ≤ r1 < r2 < r3 < n, then Max(C(Σ−1)) = n. ut

Corollary 4. If the function s : {0, 1}32 → {0, 1}32 is defined as

σ(x) = ROTRr1(x) ⊕ ROTRr2(x) ⊕ SHRr3(x) ≡ s · x (6)

where 0 ≤ r1 < r2 < 32, 0 ≤ r3 < 32, then Max(C(s−1)) = 523. ut

Corollary 5. If the function s : {0, 1}64 → {0, 1}64 is defined as

σ(x) = ROTRr1(x) ⊕ ROTRr2(x) ⊕ SHRr3(x) = s · x (7)

where 0 ≤ r1 < r2 < 64, 0 ≤ r3 < 64, then Max(C(s−1)) = 2079. ut

It is noticeable that NSA designers of SHA-2 have chosen some of the S-boxes to have the
maximal possible value, i.e. the values of C

(
Σ256

0
−1) = 32, C

(
Σ256

1
−1) = 32, C

(
Σ512

0
−1) = 64,

C
(
Σ512

1
−1) = 64. They have also chosen two of the S-boxes with almost maximal values i.e.

C
(
s256
0

−1) = 504 and C
(
s512
1

−1) = 2044.
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Fig. 1. A distribution of all possible values of C(Σ−1) for n = 32.

For n = 32, the total distribution of C(Σ−1) i.e. when Σ(x) = ROTRr1(x)⊕ROTRr2(x)⊕
ROTRr3(x) ≡ (Σ) · x is given on Figure 1. There are in total 4960 S-boxes of type Σ and as
we can see, there are just 8 possible values for C(Σ−1), forming the set {2, 3, 6, 8, 10, 15, 17, 32}.
The majority of those S-boxes (almost 62%) belongs to the category with 32 different elements
in their inverse matrix.

The distribution of C(s−1) i.e. when σ(x) = ROTRr1(x)⊕ROTRr2(x)⊕SHRr3(x) ≡ (s) ·x
is pretty different (and not very appropriate for graphical presentation). There are in total 489
different categories of S-boxes of type s according to the value of C(s−1), where minimal value
is 3 and maximal value is 523.

For n = 64, the total distribution of C(Σ−1) i.e. when Σ(x) = ROTRr1(x)⊕ROTRr2(x)⊕
ROTRr3(x) ≡ (Σ) · x is given on Figure 2. There are in total 41664 S-boxes of type Σ and
as we can see, there are just 11 categories of possible values for C(Σ−1), forming the set
{2, 3, 6, 8, 10, 16, 17, 18, 31, 33, 64}. The majority of those S-boxes (almost 69%) belongs to the
category with 64 different elements in their inverse matrix.

Similarly, the distribution of C(s−1) i.e. when σ(x) = ROTRr1(x)⊕ROTRr2(x)⊕SHRr3(x) ≡
(s)·x is pretty different. There are in total 63923 S-boxes distributed in 2038 categories according
to the value of C(s−1), where minimal value is 3 and maximal value is 2079.

So, as a conclusion from this analysis of SHA-2 S-boxes we can say that NSA have chosen
majority of the S-boxes (6 out of 8 S-boxes) to have the property that they have maximal or
close to maximal value of C(Σ−1) or C(s−1). Since the design principles for SHA-2 are still
kept classified, we do not know is this observation just a coincidence or there is a stronger
mathematical connection.
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Fig. 2. A distribution of all possible values of C(Σ−1) for n = 64.

3 Properties of Blue Midnight Wish S-boxes

Blue Midnight Wish hash function has the following bijective components (S-boxes) that are
the subject of interest in this paper:

BMW224/256 :





s0(x) = SHR1(x) ⊕ SHL3(x) ⊕ ROTL4(x) ⊕ ROTL19(x)
s1(x) = SHR1(x) ⊕ SHL2(x) ⊕ ROTL8(x) ⊕ ROTL23(x)
s2(x) = SHR2(x) ⊕ SHL1(x) ⊕ ROTL12(x) ⊕ ROTL25(x)
s3(x) = SHR2(x) ⊕ SHL2(x) ⊕ ROTL15(x) ⊕ ROTL29(x)

(8)

BMW384/512 :





s0(x) = SHR1(x) ⊕ SHL3(x) ⊕ ROTL4(x) ⊕ ROTL37(x)
s1(x) = SHR1(x) ⊕ SHL2(x) ⊕ ROTL13(x) ⊕ ROTL43(x)
s2(x) = SHR2(x) ⊕ SHL1(x) ⊕ ROTL19(x) ⊕ ROTL53(x)
s3(x) = SHR2(x) ⊕ SHL2(x) ⊕ ROTL28(x) ⊕ ROTL59(x)

(9)

where ROTLn(x) means rotation of the variable x to the left for n positions and SHLn(x) means
shifting of the variable x to the left for n positions (variables are 32-bit long for BMW224/256
and they are 64-bit long for BMW384/512).

By simple application of the Definition 1 we can obtain the following result:

Corollary 6.

BMW224/256 :





C
(
s0−1

)
= 524

C
(
s1−1

)
= 528

C
(
s2−1

)
= 528

C
(
s3−1

)
= 528

(10)

BMW384/512 :





C
(
s0−1

)
= 2080

C
(
s1−1

)
= 2080

C
(
s2−1

)
= 2080

C
(
s3−1

)
= 2080

(11)

ut
Although S-boxes in Blue Midnight Wish have four operations (compared to the three

of SHA-2), it comes as a little surprise that the maximal value of C
(
s−1

)
for n = 32 and
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n = 64 for the types of S-boxes defined in Blue Midnight Wish is not much bigger than the
corresponding maximal values for SHA-2. That is easily checkable fact by a simple exhaustive
search of all possible S-boxes of the type defined in Blue Midnight Wish.

Corollary 7. If the function s : {0, 1}32 → {0, 1}32 is defined as

s(x) = SHRr1(x)⊕ SHLr2(x)⊕ROTLr3(x)⊕ROTLr4(x) ≡ s · x (12)

where 0 ≤ r1 < 32, 0 ≤ r2 < 32, 0 ≤ r3 < r4 < 32, then Max(C(s−1)) = 528. ut

Corollary 8. If the function s : {0, 1}64 → {0, 1}64 is defined as

s(x) = SHRr1(x)⊕ SHLr2(x)⊕ROTLr3(x)⊕ROTLr4(x) ≡ s · x (13)

where 0 ≤ r1 < 64, 0 ≤ r2 < 64, 0 ≤ r3 < r4 < 64, then Max(C(s−1)) = 2080. ut

Corollaries 6, 7 and 8 show that we chose 7 S-boxes with maximal C(s−1) value and one
with a value which is very near to the maximum. More precisely, our design criteria were the
following:

– Logical functions si, i = 0, . . . , 3, are bijections in {0, 1}32 → {0, 1}32 (resp. in {0, 1}64 →
{0, 1}64) i.e. they are S-boxes.

– They have different pairs of 1-bit, 2-bits or 3-bits shifts to the left and to the right.
– They have different pairs of rotations to the left, in such a way that one rotation is less than

w/2, w = 32, 64, and the other rotation is bigger than w/2.
– The values of the rotations that are less than w/2 are in the interval of ±2 (resp. ±4) around

numbers {2, 6, 10, 14} (resp. {4, 12, 20, 28}).
– The values of the rotations that are bigger than w/2 are in the interval of ±2 (resp. ±4)

around numbers {18, 22, 26, 30} (resp. {36, 42, 50, 58}).
– The values C

(
si
−1

)
, i = 0, . . . , 3, to be the maximal possible (or very close to the maximal

value).

By computer search we have found hundreds of such bijections and from them we have
chosen the eight particular functions s0, s1, s2 and s3 (four for BMW224/256 and four for
BMW384/512).

4 Conclusions and Future Work

The design principles of SHA-2 family of hash functions are still kept as a classified NSA informa-
tion. In the open literature there have been several attempts to analyze those design principles.

In the design of Blue Midnight Wish cryptographic hash function as a SHA-3 candidate,
several bijective components (S-boxes) have been chosen with properties that are similar to the
properties of S-boxes in SHA-2.

The observations presented in this paper probably open more new questions than close some.
One obvious thing that have to be done in the next period would be to establish firm mathe-
matical connection between our defined measure Max(C(s−1)) and the theory of computational
asymmetry.
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