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Abstract 
Antoine Joux, who discovered in 2004 the hash functions generic problem (multi-collisions), said at the SECOND 
CRYPTOGRAPHIC HASH WORKSHOP, USA, August 24 - 25, 2006: "We do not understand what we are doing and 
we do not really know what we want". 

The [16] and [17] shows for the first time that to build a hash function from the classical block cipher is a vain 
effort like squaring the circle. This is also the real reason for the current problems of hash functions. 

In [16] and [18] we have designed something weird – a symmetric block cipher, whose encryption key can be 
revealed to an attacker and we gave to this new cryptographic primitive a little bit confusing name: Special 
Block Cipher. 

In 1975, a similar idea in another context triggered a revolution in cryptography and gave rise to a new branch: 
Public Key Cryptography. At that time encryption functions were created where an attacker could know the 
encryption key, which had until then seemed foolish. 

Special block ciphers have much stricter requirements: an attacker can select and discretionarily tamper with the 
key, which seems even more foolish. 

The special block cipher was designed as a new cryptographic primitive and by means of this primitive also a 
new family of hash functions SNMAC. SNMAC functions have publicly known design criteria and approach a 
random oracle in the limit. They are computationally resistant against pre-image and collision attacks and 
different special block cipher instances can be used in their design. 

In this paper, we present the very first special block cipher family: the Double Net DN(n, k)-ρ with n-bit block, 
k-bit key and ρ rounds. And, based on DN, we define hash functions family HDN(n, k)-ρ with n-bit hash code 
which hashes messages per k–n bits blocks. 

We introduce and propose to use DN(512, 8192)-10 and HDN(512, 8192)-10 as example instances. These 
functions are ready-to-use with speeds only 2-3 times lower than SHA-512 and Whirlpool. 
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1 Introduction 
The classical block cipher is a cryptographic primitive designed to protect the plaintext and its structure in the 
ciphertext using the secret encryption key. The fact that an attacker does not know the secret key is essential for 
high-speed encryption in the classical block cipher design. This is the first important fact.  

So-called "Preparation of Key" phase (the key expansion procedure) is very simple for most classical block 
ciphers. For instance, DES uses a simple "copy" function. While AES employs a weak non-linear 
transformation. The majority of block ciphers use weak non-linear or simple functions. This is the second 
significant fact. 

                                                           
* This paper presents some parts of the projects ST20052006018 and ST20052005017 for Czech NSA. 



 

It was crucially exploited in the attacks on MD and SHA hash function families. The weak non-linear functions 
allowed, in many places, to control precisely the inner state of the hash function by a pre-defined strategy 
(differential path). Strong non-linear functions would not have allowed it. Because a compression function does 
not use any secret element, an attacker knows all inputs of the underlying classical block cipher and can tamper 
with them. Consequently they could even tamper with the encryption key. This is the third important fact. 

All these three facts become weaknesses when a classical block cipher, designed to encrypt, is used in hash 
function as a one-way function. 

We presume that the reason for the current problems with hash functions is the usage of classical block ciphers 
(originally designed for totally different purposes) as a compression function. A classical block cipher is a 
totally different primitive to the one-way function as we can see in Table 1. Therefore a hash function can not 
efficiently be based on it and it is necessary to use another cryptographic primitive. 

In [16], [17] and [18] we have designed for this purpose a new cryptographic primitive (confusingly called 
special block cipher) and on its base a hash function of the SNMAC family. 

In this paper, we present the first family of the special block ciphers DN and class of hash functions HDN based 
on them. 

Table 1: Main differences between classical block ciphers and compression functions. 

2 Functions family DN(n, k)-ρ description 
DN(n, k)-ρ is n-bit block cipher with k-bit encryption key K and ρ (big) rounds, where ρ†  is a security 
parameter.  

DN consists of two functions, the key expansion Φ and the product cipher Π. The basic idea behind the DN 
double net is that the keys a, b, …, z for the sub-ciphers of the product cipher Π = Bz • ... • Bb • Ba are generated 
by strong block cipher Φ. With increasing number of rounds, the keys (a, b,… ) and ( …, y, z) become 
computationally indistinguishable from independent random variables, since they are in plaintext-ciphertext 
relation for the block cipher Φ. Thus, the block ciphers (Ba, Bb , ...) and ( ... By, Bz) themselves become 
computationally indistinguishable from (independent) random block ciphers. As the function Φ is a strong block 
cipher only on columns of key array RK (see Fig. 1), reasonable efficiency is achieved. The function Π mixes 
the columns of array RK with the plaintext. 

                                                           
† The variable ρ is denoted as rho in the source code [18] 
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Figure1: Special block cipher family DN. 

2.1 Function Φ 

The scheme is described on byte level. The number of the bytes in the plaintext is denoted as c = n/8. The 
function Φ works with three-dimensional ρ x r x c array of bytes RK[i][j][t], i = 0, ..., ρ - 1, j = 0, ..., r - 1, t = 0, 
..., c - 1 which is called round keys array. The first index (i) determines the big round key RK[i] as two-
dimensional r x c array. The big round key RK[i] consists of r small round keys RK[i][j], j = 0, ..., r - 1. Small 
round key RK[i][j] is one row of the big round key and has c bytes RK[i][j][t], t = 0, ..., c - 1. The key K is the 
input to the function Φ. It is written into the first big round key RK[0] (left to right and up to down). From the 
first big round key, the function Φ progressively generates remaining ρ - 1 big round keys RK[i], i = 1, ..., ρ - 1 
using so called column transformations, see Fig. 2. 
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Figure 2: Column transformation. 

2.2 Function Π 

The function Π is a product of ρ x r elementary transformations T1, Π = Πi = ρ - 1, ..., 0 Πj = r - 1, ..., 0 T1i,j, where T1i,j 
uses small round key RK[i][j], i = 0, ..., ρ - 1, j = 0, ..., r  - 1. The output from one transformation T1 is the input 
to another transformation T1. Input to the function Π is the input to the first transformation T1, the output from 
the last transformation T1 is the output from the function Π. 

2.2.1 Transformation T1 

Each transformation T1i,j, i = 0, ..., ρ - 1, j = 0, ..., r  - 1, consists of a substitution and a permutation on byte 
level, a linear transformation on bit level (not convertible to byte level) and small round key and round constant 
additions. All these variables can be different for different transformations T1i,j. 
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Figure 3: Transformation T1. 

2.3 Variable parameters of DN block cipher family DN 

DN is a general scheme based on two SP networks Φ and Π. DN(n, k)-ρ has variable all following parameters: 

Main dimensions: 

• n, (plaintext length in bits; length of the hash code), 

• k, (key K length in bits), 

• ρ, number of big rounds, 

Function Φ: 

• S-boxes (mapping a byte on a byte), matrices MDS, round constants  

• (optional) final key permutation KeyPerm in the key array RK, 

Function Π: 

• S-boxes (mapping a byte on a byte), matrices MDS, round constants  

• all permutations in transformations T1. 

All parameters and building blocks can be chosen different and with high freedom. However, there are some 
rules that the building blocks have to respect ([18]), briefly: 

• function Π is a strong block cipher, 

• all column transformations of Φ are strong block ciphers (with a fixed key !), they are pair wise 
different if possible, 

• functions Φ and Π do not share any S-box, all of the S-boxes have good linear and differential 
characteristics and they are generated non-algebraically, (pseudo)randomly if possible,  

• matrices used by the functions Φ and Π are all MDS type matrices (maximum distance separable). 



 

3 Network Π construction 

3.1 Π as product of block ciphers B 

The function Π is the product of the block ciphers B, each employing several T1 rounds (several small round 
keys), i.e. Π = Bz • By • ... • Bb • Ba. 

3.2 Network Π S-boxes 

Denote pB (qB) as the maximum value of the maximal differential probability (maximal linear probability, 
respectively) taken over all S-boxes used in the function B. Smaller the values of pB and qB are, more resistant 
against linear and differential cryptanalysis the function B becomes, thus less rounds is sufficient. 

3.3 Network Π resistance against DC and LC 

As B can be seen as big box B: {0, 1}n → {0, 1}n, n = 8c, its resistance against differential (DC) and linear (LC) 
cryptanalysis is estimated by its maximum differential and maximum linear probabilities estimates, according to 
the following theorem.  

Theorem 1. Block cipher B resistance against DC and LC.  

If B is constructed as nested SP network according to [18], the following holds  

DPB ≤ (pB)c,  

LPB ≤ (qB)c. 

Proof. [18]. 

4 Network Φ construction 

4.1 S-boxes SubsFi,j,t 

Let’s denote pΦ (qΦ) as the maximum value DPS (LPS) over all S-boxes SubsFi,j,t (i = 1, ..., ρ - 1, t = 0, ..., c - 1, j 
= 0, ..., r  - 1) used in the function Φ. Smaller these values are, less big rounds ρ DN may have. Random or 
pseudo-random S-boxes with sufficient resistance against linear and differential cryptanalysis are the ideal 
choice. 

4.2 Network Π resistance against DC and LC 

Theorem 2. Block cipher Ft, t = 0, ..., c - 1, resistance against DC and LC.  

Joining of two consecutive rounds of block cipher Ft = fρ-1,t • ... • f2,t • f1,t (according to [18]) creates an SDS 
network with 

DPSDS ≤ (pΦ)r,  

LPSDS ≤ (qΦ)r. 

Proof. [18].  

Note. The final key permutation KeyPerm is also variable in the function Φ. From the security point of view, its 
usage isn’t necessary; its goal is to improve diffusion of round keys in the function Π [18].  

5 Double Net as a strengthened encryption algorithm 
In the case of classical block ciphers, in the beginning it was assumed the attacker has no knowledge about the 
plaintext, later it was admitted he could know or even choose some of its parts. Currently, full control over the 



 

plaintext and ciphertext is taken into account. As an answer to these possibilities of the attacker, strong non-
linear functions processing the plaintext were introduced. 

Unfortunately, it was and still is assumed the attacker does not know the encryption key and has no means to 
manipulate with it. The technology development and the birth of various encryption devices (smart-cards, SSL 
servers, cryptographic modules, libraries, etc.) provide attacker with new possibilities weakening both of these 
original assumptions – not knowing the key and the impossibility to manipulate with it, as well. Side channel 
attacks are good example of these possibilities.  

The progress in the decades to come will undoubtedly show progress in the key exploiting attacks. As an answer 
to these possibilities of the attacker, strong non-linear functions processing the key should be introduced also. 

Special block cipher is a strong shield against these attacks. So, in this context, it is possible to use it also for 
encryption.   

The key in DN algorithm used for the encryption will not usually be as long as the key in DN algorithm used for 
hashing. In the case of encryption the array r x c can be relatively small and the dimension c (plaintext width in 
bytes) can be relatively small, as well. A typical 128-bit block cipher with 256-bit key, i.e. c = 16 and r = 2 can 
be used as an example. The column transformation principles can be preserved even when several neighbouring 
columns are joined and understood as one “thicker column” (2r bytes). The column transformation F is then 
applied on this “thicker column”.  
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Figure 4: Column transformation principle applied on several columns. 



 

6 Number of rounds in DN and hashing speed 
The quality of substitution boxes and the dimensions of the round keys used in the function Φ determine the 
relationship between the number of rounds and the estimate for the resistance of Φ against DC and LC. Using 
current S-boxes from the algorithm Whirlpool [1] we set the number of rounds to 10 for the function DN(512, 
8192). If higher quality S-boxes is used, the number of rounds can be lowered to as few as 6. However, we can 
say HDN(512, 8192)-10 is roughly 3 times slower than SHA-512 (and Whirlpool) and HDN(512, 8192)-6 
roughly 2 times slower than SHA-512. 

7 Description of hash function HDN(512, 8192) 
If DN(512, 8192) is used in a hash function following the construction SNMAC [16], hash function HDN(512, 
8192) is obtained with 512-bit code, processing the blocks of 7680 bits.  
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Figure A.1: HDN(512, 8192) defined as SNMAC based on special block cipher DN(512, 8192) 

Definition. Hash function HDN(512, 8192) is a SNMAC type hash function [16] based on special block cipher 
DN(512, 8192). It has n-bit hash code (n = 512), k bit key (k = 8192) and processes k - n bit data blocks (k - n = 
7680). It employs compression function f and final modification function g, where 

f: {0, 1}k → {0, 1}n : X → EX(Const0), 

g: {0, 1}n → {0, 1}n : X → EX || NULL(Const1), 

and E is DN(512, 8192). 

Const0 and Const1 are different constants and NULL is an array of k - n zero bits. 

Message hashing is completed in three steps. 

Step 1. Padding 

Message m being hashed is padded by this (bit) string: a single bit 1, the least possible amount of bits 0 and 128 
bit long number D (expression the binary length of m), so that the final message length could be expressed as 
L(k – n) bits, for L an integer. The bit and byte orientation is the same as in SHA-512 standard, i.e. the last bit of 
block mL contains the least signification bit of number D. The padded message is divided into L blocks of k - n 
bits, m = m1 || ... || mL-1 || mL. The same padding is used in function SHA-512.  

Step 2. Iteration 

hi = f(hi-1 || mi), i = 1, ..., L,  

where h0 is constant initialization value (IV). 

Step 3. Final modification 

SNMAC(m) = g(hL). 



 

8 Conclusion 
We showed that employing a classical block cipher in hash functions design is the real reason for the current 
problems of all hash functions. 

In [16] and [18] we have designed new cryptographic primitive - Special Block Cipher. It is a symmetric block 
cipher, whose encryption key can be revealed to an attacker. Moreover, an attacker can select and discretionarily 
tamper with the key. 

Using special block cipher we proposed a new family of hash functions of the type SNMAC ([16], [17]). The 
design criteria of SNMAC hash functions are publicly known. Limitly, these functions approach a random 
oracle, they are computationally resistant against pre-image and collision attacks, and different special block 
cipher instances can be used in their design. 

In this paper, we present the first special block cipher family DN and the first family of hash functions HDN 
following the SNMAC concept. It turns out these are not just theoretical concepts, but practically employable 
functions with speeds only 2-3 times lower than SHA-512 and Whirlpool. 

Basic idea behind the special block cipher DN is simple – contrary to classical block cipher approach, the same 
attention is paid to key and plaintext processing.  

Once the special block cipher concept is examined and accepted in hash functions, it can be used in advance in 
its original purpose – data encryption. The employment of these stronger functions might not seem as a must in 
the present, but it probably will be in the future. In the hash functions, it is a necessity today already. 
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Note. DN and HDN source codes are available on the homepages 
http://cryptography.hyperlink.cz/SNMAC/SNMAC_EN.html, 
http://cryptography.hyperlink.cz/SNMAC/SNMAC_CZ.html. 
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